Heat-Assisted Magnetic Recording: Fundamental Limits to Inverse Electromagnetic Design

نویسنده

  • Samarth Bhargava
چکیده

Heat-Assisted Magnetic Recording: Fundamental Limits to Inverse Electromagnetic Design by Samarth Bhargava Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences University of California, Berkeley Professor Eli Yablonovitch, Chair In this dissertation, we address the burgeoning fields of diffractive optics, metals-optics and plasmonics, and computational inverse problems in the engineering design of electromagnetic structures. We focus on the application of the optical nano-focusing system that will enable Heat-Assisted Magnetic Recording (HAMR), a higher density magnetic recording technology that will fulfill the exploding worldwide demand of digital data storage. The heart of HAMR is a system that focuses light to a nanosub-diffraction-limit spot with an extremely high power density via an optical antenna. We approach this engineering problem by first discussing the fundamental limits of nano-focusing and the material limits for metal-optics and plasmonics. Then, we use efficient gradient-based optimization algorithms to computationally design shapes of 3D nanostructures that outperform human designs on the basis of mass-market product requirements. In 2014, the world manufactured ~1 zettabyte (ZB), ie. 1 Billion terabytes (TBs), of data storage devices, including ~560 million magnetic hard disk drives (HDDs) [1]. Global demand of storage will likely increase by 10x in the next 5-10 years, and manufacturing capacity cannot keep up with demand alone. We discuss the state-of-art HDD and why industry invented HeatAssisted Magnetic Recording (HAMR) [2][3] to overcome the data density limitations. HAMR leverages the temperature sensitivity of magnets, in which the coercivity suddenly and nonlinearly falls at the Curie temperature. Data recording to high-density hard disks can be achieved by locally heating one bit of information while co-applying a magnetic field. The heating can be achieved by focusing 100 μW of light to a ~30nm diameter spot on the hard disk. This is an enormous light intensity, roughly ~100,000,000x the intensity of sunlight on the earth’s surface! This power density is ~1,000x the output of gold-coated tapered optical fibers used in Near-field Scanning Optical Microscopes (NSOM), which is the incumbent technology allowing the focus of light to the nano-scale. Even in these lower power NSOM probe tips, optical self-heating and deformation of the nanogold tips are significant reliability and performance bottlenecks [4][5]. Hence, the design and manufacture of the higher power optical nano-focusing system for HAMR must overcome great engineering challenges in optical and thermal performance. There has been much debate about alternative materials for metal-optics and plasmonics to cure the current plague of optical loss and thermal reliability in this burgeoning field. We clear the air. For an application like HAMR, where intense self-heating occurs, refractory metals and metals nitrides with high melting points but low optical and thermal conductivities are inferior to noble metals. This conclusion is contradictory to several claims and may be counter-intuitive to some, but the analysis is simple, evident and relevant to any engineer

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Patterned medium for heat assisted magnetic recording

Heat assisted magnetic recording HAMR is a potential solution to extend the limits of conventional magnetic recording. In HAMR, the heating of the recording medium is achieved with a near-field optical transducer. Although the literature suggests novel transducers, there is little consideration of the optical and thermal aspects of the magnetic medium. In this letter we suggest a recording medi...

متن کامل

گرم کردن پلاسما با امواج برنشتاین الکترونی از طریق واگردانی امواج عادی و فراعادی درلایه UHR

Magnetically confined plasma can be heated with high power microwave sources. In spherical torus the electron plasma frequency exeeds the electron cyclotron frequency (EC) and, as a consequence, electromagnetic waves at fundamental and low harmonic EC cannot propagate within the plasma. In contrast, electron Bernstein waves (EBWs) readily propagate in spherical torus plasma and are absorbed str...

متن کامل

The Fundamental Reasons Why Laptop Computers should not be Used on Your Lap

As a tendency to use new technologies, gadgets such as laptop computers are becoming more popular among students, teachers, businessmen and office workers. Today laptops are a great tool for education and learning, work and personal multimedia. Millions of men, especially those in the reproductive age, are frequently using their laptop computers on the lap (thigh). Over the past several years, ...

متن کامل

A two-stage heating scheme for heat assisted magnetic recording

Articles you may be interested in Analysis of signal-to-noise ratio impact in heat assisted magnetic recording under insufficient head field

متن کامل

First-principles prediction of the morphology of L10 FePt nanoparticles supported on Mg(Ti)O for heat-assisted magnetic recording applications

We perform first-principles calculations to predict the morphology of L10 ordered FePt nanoparticles grown on Mg(Ti)O substrates with relevance to application in heat-assisted magnetic recording (HAMR) media. We show how incorporation of Ti into MgO substrates reduces the FePt adhesion energy from −1.29 (pure MgO) to −2.35 J/m2 (pure TiO). This effect is due to the formation of strong Fe-Ti bon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015